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1 Introduction

Schnabl’s [1] description of an analytic solution for tachyon condensation has sparked re-

newed interest in string field theory in the last few years. The study of open string tachyon

condensation on unstable branes in bosonic and superstring theory is interesting, since

it involves three important conjectures made by Ashoke Sen [2, 3]. The first conjecture

related the height of the tachyon potential at the true minimum to the tension of the D-

brane; the second conjecture predicted existence of lump solutions with correct tensions,

which describe lower dimensional D-branes; and the third conjecture stated that there are

no physical excitations around the true minimum.1 Witten’s cubic or Chern-Simons open

string field theory [9] has provided precise quantitative tests of these conjectures [10–24].

Since string field theory corresponds to second-quantized string theory, a point in its

classical configuration space corresponds to a specific quantum state of the first quantized

string theory. As shown in ref. [9], in order to describe a gauge invariant open string field

theory we must include the full Hilbert space of states of the first quantized open string

theory, including the b and c ghost fields. Witten’s formulation of open string field theory

is based on the following Chern-Simons action

S = − 1

g2

[

1

2
〈Φ, QBΦ〉 +

1

3
〈Φ,Φ ∗ Φ〉

]

, (1.1)

where QB is the BRST operator of bosonic string theory, ∗ stands for Witten’s star product,

and the inner product 〈·, ·〉 is the standard BPZ inner product. The string field Φ belongs

to the full Hilbert space of the first quantized open string theory. The action has gauge

invariance δΦ = QBΛ + Φ ∗ Λ − Λ ∗ Φ.

1There are similar conjectures for the open string tachyon on a non-BPS D-brane and the tachyon living

on the brane-antibrane pair [4–8].
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The tachyon potential in Witten’s cubic open string field theory has been computed

numerically by an approximation scheme called level truncation [10–16]. This method is

rather similar to the variational method in quantum mechanics and it was first used by

Kostelecky and Samuel. The scheme is based on the realization that by truncating the

string field Φ to its low lying modes (keeping only the Fock states with L0 < h), one

obtains an approximation that gets more accurate as the level h is increased. Therefore,

the string field was traditionally expanded in the so-called Virasoro basis of L0 eigenstates.

However, it is well known that in this basis calculations involving the cubic interaction

term becomes cumbersome and the three-string vertex that defines the star product in the

string field algebra Φ1 ∗Φ2 is complicated [25–28]. We can overcome these technical issues

(related to the definition of the star product) by using a new coordinate system [1].

The open string worldsheet is usually parameterized by a complex strip coordinate

w = σ + iτ , σ ∈ [0, π], or by z = −e−iw, which takes values on the upper half plane.

As shown in [1], the gluing conditions entering into the geometrical definition of the star

product simplify if one uses another coordinate system, z̃ = arctan z, in which the upper

half plane looks as a semi-infinite cylinder of circumference π. In this new coordinate

system, which we will henceforth call the sliver frame, it is possible to write down simple,

closed expressions for arbitrary star products within the subalgebra generated by Fock

space states. Elements of this subalgebra are known in the literature [29–31] as wedge

states with insertions.

The simplicity of the definition of the star product in the sliver frame allows us to

solve analytically the string field equation of motion [1]

QBΦ + Φ ∗ Φ = 0 . (1.2)

Schnabl’s analytic solution Φ ≡ Ψ was obtained by expanding the string field Ψ in a basis

of L0 eigenstates, where L0 is the zero mode of the worldsheet energy momentum tensor

Tz̃z̃ in the z̃ coordinate. By a conformal transformation it can be written as

L0 =

∮

dz

2πi
(1 + z2) arctan z Tzz(z) = L0 +

∞
∑

k=1

2(−1)k+1

4k2 − 1
L2k , (1.3)

where the Ln’s are the ordinary Virasoro generators with zero central charge c = 0 of the

total matter and ghost conformal field theory. The coefficients of the L0 level expansion

of the string field Ψ are obtained by plugging Ψ into the equation of motion. Remarkably,

imposing the Schnabl gauge condition B0Ψ = 02 and truncating the equation of motion

(but not the string field) to the subset of states up to some maximal L0 eigenvalue lead

to a system of algebraic equations for the coefficients, which can be solved exactly level

by level. It was shown that the analytic solution Ψ reproduces the desired value for the

normalized vacuum energy predicted from Sen’s first conjecture [32–37]

2π2

[

1

2
〈Ψ, QBΨ〉 +

1

3
〈Ψ,Ψ ∗ Ψ〉

]

= −1 . (1.4)

2B0 is the zero mode of the b ghost in the z̃ coordinate, which can be defined by a conformal transfor-

mation in a similar manner as L0.
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To date, it is still an open question how to construct an explicit gauge transformation

to prove the equivalence between Schnabl’s analytic solution and the numerical solution

found in the level truncation scheme in the Siegel gauge. These two solutions are believed to

be the same tachyon vacuum solution. Evidence which supports this statement is given by

evaluating gauge invariants quantities on these solutions, namely, the vacuum energy and

the gauge invariant overlap [38–42]. The computation of these gauge invariant quantities

does not tell us much about the type of configuration associated to the solutions. Since, in

general, a solution to the equation of motion corresponds to extremal configurations, at first

sight we do not know that the solution will correspond to a minimum, maximum or saddle

point configuration of the theory. In the case of string field theory a direct way to find

the kind of configuration associated with the solution is to compute the off-shell tachyon

potential. In this paper, we compute the tachyon potential in the so-called sliver frame. By

extremizing this potential, we search for extremal configurations, and remarkably it turns

out that Schnabl’s analytic solution for tachyon condensation represents a saddle point

configuration of the full tachyon potential.

Regarding to the effective tachyon potential, let us point out that this potential is

non-unique. In general we can compute the effective tachyon potential as follows. By

decomposing the string field as Φ = tT + χ, where T is the tachyonic part of the string

field (the zero momentum tachyon state), while χ is an arbitrary string field which belongs

to the gauge fixed Hilbert space linearly independent of the first term T . To obtain the

effective tachyon potential, we must integrate out the string field χ, this is done by inserting

the string field Φ into the action, solving the equation of motion for χ and plugging back

to the action. The resulting expression, as a function of the single variable t is the effective

potential. Therefore we see that the effective potential computed in this way is non-unique

since it depends on the choice of an specific gauge to fix the string field Φ and the choice

of T . For instance, traditionally T is taken to be c1|0〉 and the gauge used is the Siegel

gauge b0Φ = 0.

Usually when we compute the effective tachyon potential in the Siegel gauge [14–16],

the fields which are integrated out correspond to the perturbative Fock space of states

with mass greater than the tachyon mass. In the case of the Schnabl gauge, to find the

effective tachyon potential in the sliver frame, instead of integrating out fields in the state

space used in the Siegel gauge, we integrate out fields with L0 eigenvalue greater than −1,

which corresponds to the L0 eigenvalue of the tachyon state c̃1|0〉. This means that the

effective tachyon potential we compute in the sliver frame is different from the old effective

tachyon potential computed in the Siegel gauge. As an application of the results of our

computations, we address the question of whether Schnabl’s analytic solution corresponds

to a minimum configuration of the effective tachyon potential, and we find that this is

indeed the case.

We have chosen T = c̃1|0〉 as the tachyonic part of the string field since we consider

this choice to be the most natural one from the perspective of Schnabl’s coordinates (the

sliver frame). Choosing insertions on other wedge states does not seem to be natural,

except for insertions over the sliver or the identity c̃1|∞〉, c̃1|I〉, nevertheless both of these

options are singular [43–46]. We believe that any choice other than T = c̃1|0〉 would require

– 3 –
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some motivation. One of the main motivations for computing the tachyon potential is to

investigate its branch structure, for example, to see if the perturbative and non-perturbative

vacua are connected on the same branch of the potential, to see if there are other branches

with other solutions, and to understand the off-shell limitations of the gauge-choice. If we

choose T to be the tachyon vacuum solution, the resulting potential is less interesting in

this respect. From a technical point of view our choice T = c̃1|0〉 appears to be the less

involved one.

Another remark we would like to comment is related to the choice of basis for inte-

grating out the remaining string field χ. The effective tachyon potential should not depend

on the choice of basis even if the basis are related by a somewhat singular transformation

like the transformation between the L0 with the L0 basis. This statement should be true

provided that we can manage the singularity by a suitable regularization prescription. For

instance, the use of Padé resummation techniques would eventually be needed [34, 36].

This paper is organized as follows. In section 2, we introduce Witten’s formulation

of open bosonic string field theory. After writing down the form of the cubic action, we

define the two- and three-string interaction vertex. To evaluate these interaction vertices,

we use CFT correlators defined on the sliver frame. In section 3, we study the structure of

the tachyon potential in some detail using the L0 level expansion of the string field in the

Schnabl gauge. By extremizing the potential, we provide a strong evidence that Schnabl’s

analytic solution corresponds to a saddle point configuration of the theory. A summary

and further directions of exploration are given in section 4.

2 Open bosonic string field theory revisited

In this section, we are going to review briefly some aspects of Witten’s cubic open string

field theory which will be relevant to the purposes of this paper.

2.1 Witten’s string field theory

Witten’s formulation of open string field theory is axiomatic. The space of string fields H
is taken to be an associative noncommutative algebra provided with a Z2 grading and a

∗-multiplication operation on H. The multiplication law ∗ satisfies the property that the

Z2 degree of the product a ∗ a′ of two elements a, a′ ∈ H is (−1)a(−1)a
′

, where (−1)a

is the Z2 degree of a. There exists an odd derivation Q acting on H as Q(a ∗ a′) =

Q(a) ∗ a′ + (−1)aa ∗ Q(a′). Q is also required to be nilpotent: Q2 = 0. These properties

remind us of the BRST operator QB . The final ingredient is the integration, which maps

a ∈ H to a complex number
∫

a ∈ C. This operation is linear,
∫

(a+ a′) =
∫

a+
∫

a′, and

satisfies
∫

(a ∗ a′) = (−1)aa′
∫

(a′ ∗ a) where (−1)aa′

is defined to be −1 only if both a and

a′ are odd elements of H. Also,
∫

Q(a) = 0 for any a.

Let us take a close look at the ∗-multiplication. As discussed in detail in [9], for the

multiplication to be associative, i.e. (a ∗ a′) ∗ a′′ = a ∗ (a′ ∗ a′′), we must interpret the ∗-
operation as gluing two half-strings together. Take two strings S, S′, whose excitations are

described by the string fields a and a′, respectively. Each string is labeled by a coordinate

0 ≤ σ ≤ π with the midpoint σ = π/2. Then the gluing procedure is as follows: The right

– 4 –
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hand piece π/2 ≤ σ ≤ π of the string S and the left hand piece 0 ≤ σ ≤ π/2 of the string

S′ are glued together, and what is left is the string-like object consisting of the left half of

S and the right half of S′. This is the product S ∗ S′ in the gluing prescription, and the

resulting string state on S ∗ S′ corresponds the string field a ∗ a′. Since a ∗ a′ and a′ ∗ a
are in general thought of as representing completely different elements, their agreement

under the integration
∫

(a ∗ a′) = (−1)aa′
∫

(a′ ∗ a) (up to a sing (−1)aa′

) suggests that the

integration procedure still glues the remaining sides of S and S′. If we restate it for a single

string S ∗ S′, the left hand piece is sewn to the right hand piece under the integration.

Using the above definition of the ∗-multiplication and the integration
∫

, we can write

the string field theory action as follows

S = − 1

g2

∫
(

1

2
Φ ∗QBΦ +

1

3
Φ ∗ Φ ∗ Φ

)

, (2.1)

where g is the open string coupling constant, Φ is the string field which belongs to the

full Hilbert space of the first quantized open string theory. The algebra is equipped with

a Z2 grading given by the ghost number, if we define #gh as an operator that counts the

ghost number of its argument, then we have that: #gh(Φ) = 1 , #gh(QB) = 1 , #gh(∗) =

0 , #gh(b) = −1 , #gh(c) = 1. The action (2.1) is invariant under the infinitesimal gauge

transformation δΦ = QBΛ+Φ∗Λ−Λ∗Φ, where Λ is a gauge parameter with #gh(Λ) = 0.

In the conformal field theory (CFT) prescription, the action (2.1) is evaluated as the two-

and three-point correlation function.

Since the action (2.1) has been derived quite formally, it is not suitable for concrete

calculations. In particular, ∗ and
∫

operations have been defined only geometrically as the

gluing procedure. In the next subsection we will argue the methods of computation based

on conformal field theory techniques.

2.2 The two- and three-string vertex

The open string worldsheet is parameterized by a complex strip coordinate w = σ + iτ ,

σ ∈ [0, π] or by z = −e−iw which takes values in the upper half plane (UHP). As shown in

ref. [1], the gluing conditions entering into the geometrical definition of the star product

simplify if one uses another coordinate system, z̃ = arctan z, in which the upper half plane

looks as a semi-infinite cylinder Cπ of circumference π, we have called this new coordinate

system as the sliver frame.

For purposes of computations, the sliver frame seems to be the most natural one since

the conformal field theory in this new coordinate system remains easy. As in the case of

the upper half plane, we can define general n-point correlation functions on Cπ which can

be readily found in terms of correlation functions defined on the upper half plane by a

conformal mapping,

〈φ1(x̃1) · · · φn(x̃n)〉Cπ
= 〈φ̃1(x̃1) · · · φ̃n(x̃n)〉UHP , (2.2)

where the fields φ̃i(x̃i) are defined as conformal transformation φ̃i(x̃i) = tan ◦φi(x̃i). In

general f ◦φ denotes a conformal transformation of a field φ under a map f , for instance if φ

represents a primary field of dimension h, then f ◦φ is defined as f ◦φ(x) = (f ′(x))hφ(f(x)).

– 5 –
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The two-string vertex which appears in the string field theory action is the familiar

BPZ inner product of conformal field theory.3 It is defined as a map H⊗H → R

〈φ1, φ2〉 = 〈I ◦ φ1(0)φ2(0)〉UHP , (2.3)

where I : z → −1/z is the inversion symmetry. For states defined on the sliver frame |φ̃i >

the two-string vertex can be written as

〈φ̃1, φ̃2〉 = 〈I ◦ φ̃1(0)φ̃2(0)〉UHP =
〈

φ1

(π

2

)

φ2(0)
〉

Cπ

. (2.4)

As we can see in this last expression, we evaluate the two-string vertex at two different

points, namely at π/2 and 0 on Cπ. This must be the case since the inversion symmetry

maps the point at z = 0 on the upper half plane to the point at infinity, but the point at

infinity is mapped to the point ±π/2 on Cπ.

The three-string vertex is a map H⊗H⊗H → R, and it is defined as a correlator on

a surface formed by gluing together three strips representing three open strings. For states

defined on the sliver frame |φ̃i > the three-string vertex can be written as

〈φ̃1, φ̃2, φ̃3〉 =

〈

φ1

(

3π

4

)

φ2

(π

4

)

φ3

(

−π
4

)

〉

C 3π
2

. (2.5)

Here the correlator is taken on a semi-infinite cylinder C 3π

2

of circumference 3π/2. Also,

this correlator can be evaluated on the semi-infinite cylinder Cπ of circumference π. We

only need to perform a simple conformal map (scaling) s : z̃ → 2
3 z̃ which brings the region

C 3π

2

to Cπ, and the correlator is given by

〈φ̃1, φ̃2, φ̃3〉 =

〈

s ◦ φ1

(

3π

4

)

s ◦ φ2

(π

4

)

s ◦ φ3

(

−π
4

)

〉

Cπ

. (2.6)

Note that the scaling transformation s is implemented by U3 = (2/3)L0 , where L0 is the

zero mode of the worldsheet energy momentum tensor Tz̃z̃(z̃) in the z̃ coordinate,

L0 =

∮

dz̃

2πi
z̃Tz̃z̃(z̃) . (2.7)

By a conformal transformation it can be expressed as

L0 =

∮

dz

2πi
(1 + z2) arctan zTzz(z) = L0 +

∞
∑

k=1

2(−1)k+1

4k2 − 1
L2k , (2.8)

where the Ln’s are the ordinary Virasoro generators (with zero central charge) of the full

(matter plus ghost) conformal field theory.

3Recall that the BPZ conjugate for the modes of an holomorphic field φ of dimension h is given by

bpz(φn) = (−1)n+hφ−n.

– 6 –
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2.3 Correlation functions

In this subsection we list correlation functions evaluated on the semi-infinite cylinder Cπ.

As already mentioned, the relation between correlation functions evaluated on the upper

half plane and those evaluated on the semi-infinite cylinder is given by conformal transfor-

mation.

Employing the definition of the conformal transformation c̃(x) = cos2(x)c(tan x) of the

c ghost and its anticommutation relations with the operators QB , B0 and B1,
4

{QB , c̃(z)} = c̃(z)∂c̃(z) , (2.9)

{B0, c̃(z)} = z , (2.10)

{B1, c̃(z)} = 1 , (2.11)

we obtain the following basic correlation functions,

〈c̃(x)c̃(y)c̃(z)〉 = sin(x− y) sin(x− z) sin(y − z) , (2.12)

〈c̃(x)QB c̃(y)〉 = − sin(x− y)2 , (2.13)

〈c̃(x)B0c̃(y)c̃(z)c̃(w)〉 = y〈c̃(x)c̃(z)c̃(w)〉 − z〈c̃(x)c̃(y)c̃(w)〉 + w〈c̃(x)c̃(y)c̃(z)〉 , (2.14)

〈c̃(x)c̃(y)B0c̃(z)c̃(w)〉 = z〈c̃(x)c̃(y)c̃(w)〉 − w〈c̃(x)c̃(y)c̃(z)〉 , (2.15)

〈c̃(x)B1c̃(y)c̃(z)c̃(w)〉 = 〈c̃(x)c̃(z)c̃(w)〉 − 〈c̃(x)c̃(y)c̃(w)〉 + 〈c̃(x)c̃(y)c̃(z)〉 , (2.16)

〈c̃(x)c̃(y)B1c̃(z)c̃(w)〉 = 〈c̃(x)c̃(y)c̃(w)〉 − 〈c̃(x)c̃(y)c̃(z)〉 . (2.17)

To compute correlation functions involved in the evaluation of the string field theory

action, the following contour integrals will be very useful,

σ(a) ≡
∮

dz

2πi
za sin(2z) =

θ(−a− 2)

Γ(−a) ((−1)a + 1)(−1)
2−a

2 2−a−2 , (2.18)

ς(a) ≡
∮

dz

2πi
za cos(2z) =

θ(−a− 1)

Γ(−a) ((−1)a − 1)(−1)
1−a

2 2−a−2 , (2.19)

F(a1, a2, a3, α1, β1, α2, β2, α3, β3) ≡
∮

dx1dx2dx3

(2πi)3
xa1

1 x
a2

2 x
a3

3 〈c̃(α1x1+β1)c̃(α2x2+β2)c̃(α3x3+β3)〉

=
1

αa1+1

1 αa2+1

2 αa3+1

3

[

δa3,−1

(

σ(a1)σ(a2)+ς(a1)ς(a2)
)

sin(2(β1−β2))+
(

σ(a1)ς(a2)−ς(a1)σ(a2)
)

cos(2(β1−β2))

4

+δa2,−1

(

ς(a1)σ(a3)−σ(a1)ς(a3)
)

cos(2(β1−β3))−
(

ς(a1)ς(a3)+σ(a1)σ(a3)
)

sin(2(β1−β3))

4

+δa1,−1

(

ς(a2)ς(a3)+σ(a2)σ(a3)
)

sin(2(β2−β3))+
(

σ(a2)ς(a3)−ς(a2)σ(a3)
)

cos(2(β2−β3))

4

]

,

(2.20)

4The operators B0 and B1 ≡ B−1 are modes of the b ghost which are defined on the semi-infinite cylinder

coordinate as Bn =
H

dz

2πi
(1 + z2)(arctan z)n+1b(z).

– 7 –
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where θ(n) is the unit step (Heaviside) function which is defined as

θ(n) =

{

0, if n < 0

1, if n ≥ 0 .
(2.21)

Let us list a few non-trivial correlation functions which involve operators frequently

used in the L0 basis, namely, L̂n (L̂ ≡ L0 + L†
0), B̂ (B̂ ≡ B0 + B†

0), Ur =
(

2
r

)L0 and the

c̃(z) ghost

〈bpz(c̃p1
)L̂n1U †

rUr c̃(x)c̃(y)〉 = (2.22)

=

∮

dz1dx1

(2πi)2
(−2)n1n1!x

p1−2
1

(z1 − 2)n1+1

(

2

r

)−p1+n1−2( 2

z1

)−p1−2〈

c̃
(

x1 +
π

2

)

c̃

(

4

z1r
x

)

c̃

(

4

z1r
y

)〉

,

〈bpz(c̃p1
)L̂n1B̂U †

rUr c̃(x)c̃(y)c̃(z)〉 = (2.23)

= −δp1,0

∮

dz1
2πi

(−2)n1n1!

(z1 − 2)n1+1

(

2

r

)−p1+n1−2( 2

z1

)−p1−2〈

c̃

(

4

z1r
x

)

c̃

(

4

z1r
y

)

c̃

(

4

z1r
z

)〉

+

∮

dz1dx1

(2πi)2
(−2)n1n1!x

p1−2
1

(z1 − 2)n1+1

(

2

r

)−p1+n1−2 (

2

z1

)−p1−2

×

×
〈

c̃
(

x1 +
π

2

)

B0c̃

(

4

z1r
x

)

c̃

(

4

z1r
y

)

c̃

(

4

z1r
z

)〉

,

〈bpz(c̃p1
)bpz(c̃p2

)L̂n1B̂U †
rUr c̃(x)c̃(y)〉 = (2.24)

= −δp2,0

∮

dz1dx1

(2πi)2
(−2)n1n1!x

p1−2
1

(z1 − 2)n1+1

(

2

r

)−p1−p2+n1−1 (

2

z1

)−p1−p2−1

×

×
〈

c̃
(

x1 +
π

2

)

c̃

(

4

z1r
x

)

c̃

(

4

z1r
y

)〉

+ δp1,0

∮

dz1dx2

(2πi)2
(−2)n1n1!x

p2−2
2

(z1 − 2)n1+1

(

2

r

)−p1−p2+n1−1 (

2

z1

)−p1−p2−1

×

×
〈

c̃
(

x2 +
π

2

)

c̃

(

4

z1r
x

)

c̃

(

4

z1r
y

)〉

+

∮

dz1dx1dx2

(2πi)3
(−2)n1n1!x

p1−2
1 xp2−2

2

(z1 − 2)n1+1

(

2

r

)−p1−p2+n1−1 (

2

z1

)−p1−p2−1

×

×
〈

c̃
(

x1 +
π

2

)

c̃
(

x2 +
π

2

)

B0c̃

(

4

z1r
x

)

c̃

(

4

z1r
y

)〉

,

where the “bpz” acting on the modes of the c̃(z) ghost stands for the usual BPZ conjugation

which in the L0 basis is defined as follows

bpz(φ̃n) =

∮

dz

2πi
zn+h−1φ̃

(

z +
π

2

)

, (2.25)

for any primary field φ̃(z) with weight h. The action of the BPZ conjugation on the modes

of φ̃(z) satisfies the following useful property

U †−1
r bpz(φ̃n)U †

r =

(

2

r

)−n

bpz(φ̃n) . (2.26)
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Correlation functions which involve only modes of the c̃(z) ghost can be expressed in terms

of the contour integral (2.20) as follows

〈c̃pc̃q c̃r〉 =

∮

dxdydz

(2πi)3
xp−2yq−2zr−2〈c̃(x)c̃(y)c̃(z)〉

= F(p − 2, q − 2, r − 2, 1, 0, 1, 0, 1, 0) , (2.27)

〈bpz(c̃p)c̃q c̃r〉 =

∮

dxdydz

(2πi)3
xp−2yq−2zr−2

〈

c̃
(

x+
π

2

)

c̃(y)c̃(z)
〉

= F
(

p− 2, q − 2, r − 2, 1,
π

2
, 1, 0, 1, 0

)

, (2.28)

〈bpz(c̃p)bpz(c̃q)c̃r〉 =

∮

dxdydz

(2πi)3
xp−2yq−2zr−2

〈

c̃
(

x+
π

2

)

c̃
(

y +
π

2

)

c̃(z)
〉

= F
(

p− 2, q − 2, r − 2, 1,
π

2
, 1,

π

2
, 1, 0

)

. (2.29)

To evaluate correlators involving modes of the c̃(z) ghost and insertions of opera-

tors L̂n, B̂, we can use the basic correlators (2.14)–(2.17) and the definition of L̂n ≡
(−2)nn!

∮

dz
2πi

1
(z−2)n+1U

†
zUz. For instance, as a pedagogical illustration let us compute a

correlator involving a L̂n insertion,

〈bpz(c̃p)(L0 + L†
0)

nc̃q c̃r〉 = (−2)nn!

∮

dz1
2πi

1

(z1 − 2)n+1
〈bpz(c̃p)U

†
z1
Uz1

c̃q c̃r〉 (2.30)

= (−2)nn!

∮

dz1
2πi

( 2
z1

)−p−q−r

(z1 − 2)n+1
〈bpz(c̃p)c̃q c̃r〉

= (−1)nn!

(

p+ q + r

n

)

F
(

p− 2, q − 2, r − 2, 1,
π

2
, 1, 0, 1, 0

)

,

where we have used the following useful contour integral
∮

dz
2πi

zm

(z−a)n+1 =
(

m
n

)

am−n.

Correlators involving the ∗-product can be computed using the results of this subsec-

tion. For instance, let us compute the correlator 〈0|bpz(c̃p1
)L̂n1, L̂n2 c̃p2

|0〉 ∗ L̂n3 c̃p3
|0〉,

〈0|bpz(c̃p1
)L̂n1 , L̂n2 c̃p2

|0〉 ∗ L̂n3 c̃p3
|0〉 =

=
(−2)n2+n3n2!n3!

(2πi)4

∮

dz2dz3dx2dx3 x
p2−2
2 xp3−2

3

(z2 − 2)n2+1(z3 − 2)n3+1
×

×〈0|bpz(c̃p1
)L̂n1 , U †

z2
Uz2

c̃(x2)|0〉 ∗ U †
z3
Uz3

c̃(x3)|0〉

=
(−2)n2+n3n2!n3!

(2πi)4

∮

dz2dz3dx2dx3 x
p2−2
2 xp3−2

3

(z2 − 2)n2+1(z3 − 2)n3+1
×

×
〈

bpz(c̃p1
)L̂n1U †

rUr c̃
(

x2 +
π

4
(z3 − 1)

)

c̃
(

x3 −
π

4
(z2 − 1)

)〉

=
(−1)n1+n2+n322n1+n2+n3−2p1−4n1!n2!n3!

(2πi)3

∮

dz1dz2dz3 z
p1+2
1 rp1+2−n1

(z1 − 2)n1+1(z2 − 2)n2+1(z3 − 2)n3+1
×

×F
(

p1 − 2, p2 − 2, p3 − 2, 1,
π

2
,

4

z1r
,
π(z3 − 1)

z1r
,

4

z1r
,
π(1 − z2)

z1r

)

, (2.31)

where we have defined r ≡ z2 + z3 − 1.
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3 The tachyon potential

To compute the effective tachyon potential in a particular gauge, it is necessary to specify

which fields are being integrated out. Usually, when we compute the effective tachyon

potential in the Siegel gauge, the fields which are integrated out correspond to the pertur-

bative Fock space of states with mass greater than the tachyon mass [14, 15].

In this section, in order to find the effective tachyon potential in the sliver frame,

instead of integrating out fields in the state space mentioned in the previous paragraph,

we are going to integrate out fields with L0 eigenvalue greater than the L0 eigenvalue of

the tachyon state c̃1|0〉. This means that the effective tachyon potential we compute is

different from the old effective tachyon potential computed in the Siegel gauge. As we

already commented in the introduction, we choose the state c̃1|0〉 as the tachyonic state

since it is the most natural one from the perspective of Schnabl’s coordinates (the sliver

frame). Choosing insertions on other wedge states does not seem to be natural, except for

insertions over the sliver or the identity c̃1|∞〉, c̃1|I〉, nevertheless both of these options

are singular [43–46].

3.1 The effective tachyon potential in the Schnabl gauge

As in the case of the Siegel gauge, in the Schnabl gauge we could perform an analysis of the

tachyon potential by performing computations in the L0 level truncation. We are going to

define the level of a state as the eigenvalue of the operator N = L0 + 1. This definition is

adjusted so that the zero momentum tachyon c̃1|0〉 is at level zero.

Having defined the level number of states contained in the level expansion of the string

field, level of each term in the action is also defined to be the sum of the levels of the fields

involved. For instance, if states φ̃1, φ̃2, φ̃3 have level n1, n2, n3 respectively, we assign level

n1 + n2 + n3 to the interaction term 〈φ̃1, φ̃2, φ̃3〉. When we say level (m,n), we mean that

the string field includes all terms with level ≤ m while the action includes all terms with

level ≤ n.

In this paper, we want to study questions related to the appearance of a stable vac-

uum in the theory when the tachyon and other scalar fields acquire nonzero expectation

values. Because all the questions we will address involve Lorentz-invariant phenomena, we

can restrict attention to scalar fields in the string field expansion. We write the string field

expansion in terms of scalar fields as

Ψ =

∞
∑

i=0

xi|ψi〉 , (3.1)

where in the L0 level expansion the state |ψi〉 is built by applying the modes of the c̃(z)

ghost and the operators (L0 + L†
0)

n, B0 + B†
0 on the SL(2,R) invariant vacuum |0〉. The

first term in the expansion is given by the zero-momentum tachyon |ψ0〉 = c̃1|0〉. We will

restrict our attention to an even-twist and ghost-number one string field Ψ satisfying the

Schnabl gauge B0Ψ = 0. Choosing a particular gauge prevents the inclusion of ‘almost’

flat directions which would have correspond to gauge degrees of freedom in the potential

– 10 –
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(‘almost’ is in quotation marks, since level truncation destroys gauge symmetry). The

tachyon potential we want to evaluate is defined as

V = 2π2

[

1

2
〈Ψ, QBΨ〉 +

1

3
〈Ψ,Ψ ∗ Ψ〉

]

. (3.2)

The effective tachyon potential can be determined by starting with the complete set of terms

in the potential truncated at some level (m,n), fixing a value for x0, solving for all coeffi-

cients xi, i ≥ 1, and plugging them back into the potential to rewrite it as a function of x0.

In order to explain the procedure for finding the effective tachyon potential, let us first

set all components of the string field Ψ to zero except for the first coefficient x0. This state

will be said to be of level zero. Thus, we take

Ψ = x0c̃1|0〉 . (3.3)

Plugging (3.3) into the definition (3.2), we get the zeroth approximation to the tachyon

potential,

V (0,0) = 2π2

[

−x
2
0

2
+

27
√

3x3
0

64

]

. (3.4)

To compute corrections to this result, we need to include higher level fields in our

analysis. The analysis can be simplified by noting that the potential (3.2) has a twist

symmetry under which all coefficients of odd-twist states change sign, whereas coefficients

of even-twist states remain unchanged. Therefore coefficients of odd-twist states at lev-

els above c̃1|0〉 must always appear in the action in pairs, and they trivially satisfy the

equations of motion if set to zero. Thus, we look for Ψ containing only even-twist states.

Taking into account the considerations above, at the next level we find that the string

field is given by

Ψ = x0c̃1|0〉 − 2x1(L0 + L†
0)c̃1|0〉 − 2x1(B0 + B†

0)c̃0c̃1|0〉 , (3.5)

where the coefficients of the expansion were chosen so that Ψ satisfies the Schnabl gauge,

B0Ψ = 0. Substituting this level expansion of the string field (3.5) into (3.2) we get the

(1,3) level approximation to the potential

V (1,3) = 2π2

[

−x
2
0

2
+

27
√

3x3
0

64
+

(

27

8

√
3 − 9

8
π

)

x2
0x1 +

(

9

2

√
3 − 3π +

2π2

√
3

)

x0x
2
1

]

. (3.6)

Since the effective tachyon potential depends on the single variable x0 which corre-

sponds to the tachyon coefficient, we are going to integrate out the variable x1. Using the

partial derivative of the potential, ∂x1
V (1,3) = 0, we can write the variable x1 in terms of x0

x1 =
27π − 81

√
3

216
√

3 − 144π + 32
√

3π2
x0 . (3.7)
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By plugging back (3.7) into the potential (3.6) to rewrite it as a function of the single

variable x0, we obtain the effective potential

V
(1,3)
eff = 2π2

[

−x
2
0

2
+

486
√

3π − 2187 + 405π2

3456
√

3 − 2304π + 512
√

3π2
x3

0

]

. (3.8)

Extending our analysis to the next level, we are going to use the string field Ψ satisfying

the Schnabl gauge B0Ψ = 0 expanded up to level two states,

Ψ = x0c̃1|0〉 − 2x1(L0 + L†
0)c̃1|0〉 − 2x1(B0 + B†

0)c̃0c̃1|0〉 + x2c̃−1|0〉
−x3(L0 + L†

0)
2c̃1|0〉 − 2x3(L0 + L†

0)(B0 + B†
0)c̃0c̃1|0〉 . (3.9)

To obtain the level (2,6) potential, we plug the string field (3.9) into the definition (3.2).

By using some correlation functions derived in the previous section, we arrive to the fol-

lowing potential

V (2,6) = 2π2

[

− x2
0

2
+

27
√

3x3
0

64
+

(

27

8

√
3 − 9

8
π

)

x2
0x1 +

(

9

2

√
3 − 3π +

2π2

√
3

)

x0x
2
1

+x0x2 −
3

4

√
3x2

0x2 −
16π2x2

1x2

9
√

3
− x2

2 +
x0x

2
2√

3
+

(

8π

27
− 8

3
√

3

)

x1x
2
2 − 2x0x3

+

(

3π

4
− 9

8

√
3+

5π2

8
√

3

)

x2
0x3−

8π4x2
1x3

81
√

3
− 7π2x0x2x3

9
√

3
+

(

8

243
π3− 8π2

3
√

3

)

x1x2x3

+

(

16π2

81
√

3
− 8

3
√

3
+

16π

27

)

x2
2x3 +

(

2π5

2187
− 98π4

243
√

3

)

x1x
2
3 +

17π4x0x
2
3

324
√

3

+

(

16π3

243
− 8π2

3
√

3
− 16π4

243
√

3

)

x2x
2
3 +

(

4π5

2187
− 98π4

243
√

3
− 28π6

6561
√

3

)

x3
3

]

. (3.10)

As we can see, starting at level (2,6), coefficients other than the tachyon coefficient x0

are no longer quadratic, therefore we cannot exactly integrate out all these non-tachyonic

coefficients (xi, i ≥ 1). Therefore, we are forced to use numerical methods to study the

effective tachyon potential. We have used Newton’s method to find the zeros of the partial

derivatives of the potential. For a fixed value of the tachyon coefficient x0, there are in

general many solutions of the equations for the remaining coefficients xi, i ≥ 1, which

correspond to different branches of the effective potential. We are interested in the branch

connecting the perturbative with the nonperturbative vacuum and having a minimum value

which agrees with the one predicted from Sen’s first conjecture.

Applying the numerical approach described above, we have integrated out the variables

x1, x2 and x3 appearing in the potential (3.10). At this level, we found that the shape of

the effective tachyon potential which connects the perturbative with the nonperturbative

vacuum is given by the graph shown in figure 1. For reference we have plotted the effective

tachyon potential up to level (3,9). The minimum value of the level (2,6) effective potential

V
(2,6)
eff occurs at x0,min = 0.7023612173, and its depth gets the value of −1.0466220796 which

is 4.66% greater than the conjectured value (1.4). At this level, we have noted that our

algorithm becomes unstable for values of the tachyon coefficient between 0 < x0 < 0.47,
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Figure 1. Effective tachyon potential at different levels.

this may indicate that the branch which contain the perturbative with the nonperturbative

vacuum meets one or more other branches which play the role of attractors. In fact, we

have found that there is a new branch which meets the physical branch5 at x0 ≈ 0.47.

This new branch contains the extremal points x0 = 0.2205432494, x1 = −0.0150554001,

x2 = −0.2576803891, x3 = 0.1491283766, which are solutions to the equations coming

from the partial derivatives of the potential (3.10). We have excluded this new branch

(generated by these points) since it does not contain the nonperturbative vacuum.

We could continue to perform higher level computations, since these computations

follow the same procedures shown above, but at this point we only want to comment about

the results. Higher level computations reveal that the effective tachyon potential has the

profile found in the lower level cases. However, at higher levels the algorithm used to

compute the effective tachyon potential fails to converge outside the region −0.014 < x0 <

0.701. This result indicates that the effective tachyon potential has branch points near x0 ≈
−0.014 and x0 ≈ 0.701, where the nontrivial vacuum appears at x0 = 0.636. The locations

of these branch points appear to converge under L0 level truncation to fixed values.

While the perturbative and nonperturbative vacua both lie on the effective potential

curve between these branch points, the existence of these branch points prompts us to ask

what cubic string field theory can say about the effective tachyon potential beyond these

branch points. In particular, an issue of some interest is how the effective tachyon potential

5We refer to the physical branch as the branch which connects the perturbative with the nonperturbative

vacuum.
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behaves for large negative values of x0. A possible physical reason why our algorithm fails

to converge outside the region −0.014 < x0 < 0.701 might be analogous to the case of the

effective potential found in the usual L0 level expansion, where the the existence of these

branch points is related to the validity of the Siegel gauge. It is then possible that in the

L0 level expansion the singularities previously found in the effective tachyon potential are

gauge artifacts arising from the boundary of the region of validity of Schnabl gauge. We

leave the analysis of this possiblity for further research.

Up to the level that we have explored with our computations, it is worth remarking

that the depth of the effective potential is converging to the conjectured value (1.4). For

instance, at level (5,15) the minimum value of the effective potential occurs at x0,min =

0.6368018630, and its depth takes on the value −0.9993346627 which is 99.93% of the

conjectured value.

Another remark is that at the minimum of the effective tachyon potential, the tachyon

coefficient x0 is approaching the analytical value of 2/π, which interestingly is the same

value of the tachyon coefficient in Schnabl’s analytical solution when expanded in the L0 ba-

sis. In the next subsection we will give additional comments on this important observation.

To conclude this subsection, let us note that if we go to high enough level, the depth of

the effective tachyon potential should diverge since the minimum of the effective potential

should correspond to the value of the action evaluated on Schnabl’s solution truncated

at some finite L0 level. In order to regularize the value of the minimum of the effective

potential, the use of Padé resummation techniques would eventually be needed [36].

3.2 The stable vacuum and Schnabl’s solution

In this subsection we want to address the connection between the configuration found by

extremizing the tachyon potential and Schnabl’s analytic solution.

In order to compare the analytic solution with the one obtained by the methods shown

in the previous subsection, let us write Schnabl’s analytic solution up to level-two states

Ψanalytic =
2

π
c̃1|0〉 +

1

2π
(L0 + L†

0)c̃1|0〉 +
1

2π
(B0 + B†

0)c̃0c̃1|0〉 +
π

48
c̃−1|0〉

+
1

24π
(L0 + L†

0)
2c̃1|0〉 +

1

12π
(L0 + L†

0)(B0 + B†
0)c̃0c̃1|0〉 . (3.11)

This solution was found by solving the string field equation of motion [1]. In general, a

solution to the equation of motion corresponds to extremal configurations. We are not

guaranteed that the solution will correspond to a minimum, maximum or saddle point con-

figuration of the tachyon potential. Certainly, as we have seen in the previous subsection,

the solution lies on the minimum configuration of the effective tachyon potential. Next we

are going to check whether Schnabl’s solution is a saddle point configuration of the full

tachyon potential.6

By using Fermat’s theorem, the potential extremums of a multivariable function

f(x0, · · · , xN ), with partial derivative ∂if ≡ ∂
∂xi
f(x0, · · · , xN ), i = 0, · · · , N are found

6By the full tachyon potential we mean the tachyon potential without integrating out the coefficients

(xi, i ≥ 1).
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Level (2,6) Level (3,9) Level (4,12) Level (5,15) Coeff. Schnabl’s solution

0.702361217 0.629070893 0.632254043 0.636801863 0.636619772

0.165917159 0.163408594 0.169249348 0.160355988 0.159154943

0.165917159 0.163408594 0.169249348 0.160355988 0.159154943

0.036787327 0.093717432 0.102813347 0.064453673 0.065449846

0.044922378 0.005498242 0.002281681 0.011760238 0.013262911

0.089844757 0.010996484 0.004563363 0.023520476 0.026525823

Table 1. The six first coefficients of the string field level expansion corresponding to the saddle

point configuration of the full tachyon potential computed up to level (5,15). The last column shows

the corresponding analytical value for these coefficients, taken from Schnabl’s solution expanded in

the L0 basis (3.11).

by solving an equation in ∂if = 0. Fermat’s theorem gives only a necessary condition for

extreme function values, and some stationary points are saddle points (not a maximum or

minimum). A test that can be applied at a critical point x ≡ (x0, · · · , xN ) is by using the

Hessian matrix, which is defined as Hij ≡ ∂i∂jf . If the Hessian is positive definite at x,

then f attains a local minimum at x. If the Hessian is negative definite at x, then f attains

a local maximum at x. If the Hessian has both positive and negative eigenvalues then x is

a saddle point for f .

We claim that Schnabl’s analytic solution corresponds to a saddle point configuration of

the full tachyon potential. Evidence supporting our claim is found by computing the string

field corresponding to the extremal points7 obtained from extremizing the full tachyon

potential, and by computing the respective eigenvalues of the Hessian matrix. We have

performed this analysis up to level (5,15). The results are shown in tables 1 and 2. In the

first table 1 we have compared the first six coefficients of the analytical L0 level expansion

of the solution (3.11) with those obtained from extremizing the full tachyon potential. In

the second table 2, we show the respective eigenvalues of the Hessian matrix. It seems

that some eigenvalues of the Hessian matrix does not have pattern of convergence when

the level is increasing. We should attribute the origin of this divergence to the fact that

Schnabl’s analytic solution when expanded in the new bases of L0 eigenstates results in

an asymptotic expansion [37]. This issue is in analogy with the problem of computing the

depth of the effective tachyon potential at higher levels. As we already pointed out, the

depth of the effective potential should diverge since the minimum of the effective potential

should correspond to the value of the string field action evaluated on Schnabl’s solution

truncated at some finite L0 level.

4 Summary and discussion

We have given in detail a prescription for computing the tachyon potential in the sliver

frame. As we have seen, calculations are performed more easily in this frame than in the

7Let us emphasize that these extremal points are the points corresponding to the minimum configuration

of the effective tachyon potential.
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Levels (m,n) Eigenvalues of the Hessian matrix

(2,6) 327.495421, 223.737479, −35.453340, 11.654594

(3,9) −1695.539743, 918.029302, 368.749341, −327.871269

97.186964, −16.995283, 13.192470

−26154.959292, −13583.490319, 5971.278019, 503.332849

(4,12) −384.826805, 295.055986, −64.304441, 62.708283

16.044610, −14.620229, 6.552447

−1.445596×106 , −333771.902128, 226359.468852, 14180.406985

(5,15) 4335.817536, −2974.472506, 774.905979, −680.652950, 5.811130

445.004921, 255.059728, −142.316817, 56.987331

−16.017131, −11.715162, −5.517987, 2.755357

Table 2. Eigenvalues of the Hessian matrix corresponding to the extremal points of the full tachyon

potential at different levels.

usual Virasoro basis of L0 eigenstates. For instance, in the old basis the evaluation of the

cubic interaction term using CFT methods requires cumbersome computations of finite

conformal transformations for non-primary fields. The simplicity of the definition of the

∗-product in the new basis allows us to overcome these difficulties.

Since one aim of this paper was to answer the question whether Schnabl’s analytic

solution corresponds to a saddle point configuration of the full tachyon potential, we have

focused our attention to a string field satisfying the Schnabl gauge. Since the computation

of the tachyon potential does not require us to choose a specific gauge condition, we can

use another gauge for the string field. It would be interesting to find connections between

those family of solutions computed in different gauges which gives the right value for the

vacuum energy. For instance, in recent work [37] a new simple solution for the tachyon

condensation was analyzed and an explicit gauge transformation which connects the new

solution to the original Schnabl’s solution was constructed [1].

We have provided a strong evidence that Schnabl’s analytic solution corresponds to a

saddle point configuration of the full tachyon potential, and furthermore we have shown

that the solution lies on the minimum of the effective tachyon potential. Nevertheless,

there remain two important issues regarding the vacuum solution. The first is related to

the computation of the analytic solution in the Siegel gauge. The second is to construct

an explicit gauge transformation which connects Schnabl’s solution to the one found using

the Siegel gauge.

An issue that could be addressed using the methods outlined in this work would be the

computation of the effective tachyon potential in the sliver frame for the case of the cubic

superstring field theory. The profile of the effective potential in this theory is very puzzling

since the tachyon has vanishing expectation value at the local minimum of the effective

potential, so the tachyon vacuum sits directly below the perturbative vacuum [47].

Finally, while we have not developed the details here, our methods should be applicable

to computations in Berkovits’s superstring field theory. The relevant string field theory is

non-polynomial [48], but since the theory is based on Witten’s associative star product, the

methods discussed in this paper would apply with minor modifications. It would certainly

be desirable to test the brane-antibrane annihilation conjecture analytically [49].
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